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THIS EDITORIAL FOCUS FEATURES A paper by Krall et al. (12) from
the laboratories of two young investigators at Albany (New
York) College of Pharmacy: Alex Steiner and Carlos Feleder.
Both have already published their first independent studies (32,
37, 38), and their collaborative work highlighted herein con-
tinues this series of exciting projects and expands it to study the
central mechanisms of the effect of food deprivation on the
thermoregulatory response to systemic inflammation. The spot-
light in this work is on PGE2 and PGD2. Whereas the role of
the former in energy metabolism and inflammation is well
established, particularly as a mediator of fever, the role of the
latter is less clear.

The study by Krall et al. (12) reports, among other findings,
that administration of PGD2 into the lateral cerebral ventricle
of the rat produces a weak hypothermic response. This obser-
vation finds support in several studies (Table 1), including an
early study from the group of Osamu Hayaishi (36), author of
many discoveries in the biology of PGD2 (15, 17, 22). By the
same token, the hypothermic activity of PGD2 contradicts
multiple reports in rats, rabbits, and cats, showing that PGD2

either does not affect body temperature or causes hyperthermia
(Table 1). One such report (5) is coauthored by Anthony
Milton, a pioneer in studying thermoregulatory effects of
prostanoids and discoverer of the pyrogenic activity of PGs of
the E and F series (16). Is it possible that PGD2 possesses a
dual thermoregulatory action and can either decrease or in-
crease body temperature?

The complex biology of PGD2 makes such a proposition
plausible and provides plenty of potential mechanisms, includ-
ing dose-dependent (6, 11, 22) and species-specific (13) ones.
The instability of PGD2, due to its rapid enzymatic and non-
enzymatic metabolism via multiple pathways, can also be a
contributing factor. Some PGD2 metabolites are thought to be
biologically inactive, and the authors of the highlighted paper
(12) observed that the hypothermic activity disappeared when
stock solutions of PGD2 were stored for � 3 wk at �80°C.
Other metabolites, including several PGs of the J series with a
cyclopentenone structure, are biologically active and, more-
over, can affect body temperature. For example, 15-deoxy-
�12,14-PGJ2 has been reported to be both antipyretic (18) and
pyrogenic (A. A. Steiner, A. S. Dragic, J. Pan, A. A. Ro-
manovsky; unpublished observation; cited from Ref. 30) in

rats. It has also been shown that the thermoregulatory action of
PGD2 can depend on the route of administration (29) and be
site specific within the brain (36), even though the current
knowledge about specific sites and mechanisms of the central
action of PGD2 is sketchy. It was thought originally that its
receptor (DP, presently known as DP1) is widely distributed
throughout the brain, as mentioned in the highlighted paper
(12). However, more recent studies with a specific antibody
have shown that DP1 immunoreactivity is concentrated in the
limited area of leptomeninges of the basal forebrain, where it is
often colocalized with lipocalin PGD synthase (17). This area
is in close proximity to the ventrolateral preoptic area (a “sleep
center”), and the DP1 receptor in the subarachnoid space of the
basal forebrain is thought to trigger the effects of PGD2 on
sleep (8). In addition to DP1, PGD2 can also act through a
distinct receptor type, DP2 (also known as the chemoattractant
receptor-homologous molecule expressed on T-helper type 2
cells, or CRTH2) and through several other prostanoid recep-
tors, perhaps different receptors in different species (34), as
well as via a non-receptor-mediated mechanism.

An important methodological issue that cannot be neglected
is that the thermoregulatory effect of a compound often
strongly depends on the ambient temperature, especially in
small rodents. Many adrenergic compounds (39), drugs of
abuse (19), LPS (33), platelet-activating factor (10), and other
substances cause hyperthermia in a thermoneutral environment
but cause hypothermia under subneutral conditions. It is, there-
fore, critical to conduct thermophysiological experiments in
rats and mice at a tightly controlled ambient temperature. It is
also important to determine whether this temperature is neutral,
subneutral, or supraneutral in each experimental setup, because
the thermoneutral zone for the same animal in different setups
varies widely, depending on several physical factors that affect
heat exchange between the animal and its environment (25).
One way to determine whether the conditions in a given setup
are thermally neutral, subneutral, or supraneutral is by assess-
ing tail skin blood flow, e.g., by thermometry or thermography
(25), and several laboratories now use this approach for exper-
iments in rats (1, 4) and mice (27). From this point of view, the
work of Krall et al. (12) is impeccable. In addition to deter-
mining the thermoneutral zone in their setup and using prop-
erly characterized thermal conditions, the authors also took an
important precautionary step in making all injections through
preimplanted cannulas, without touching the animals, thus
minimizing the associated stress and avoiding stress hyperther-
mia. Stress hyperthermia due to drug administration has been
shown to strongly affect thermal responses. For example, it can
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mask the early febrile phase and modify the later phases of LPS
fever (24). Because the physiological experiments of Krall et
al. (12) were conducted expertly, their study leaves little doubt
that PGD2 can decrease body temperature in rats, at least under
some conditions.

Besides decreasing body temperature, PGD2 is thought to
induce sleep (8), increase food intake (21), and cause analgesia
(23) (Fig. 1). Interestingly, these effects are the exact opposite
of those produced by the fever mediator, PGE2, which is
generally thought to cause wakefulness (8), decrease food
intake (20), and induce hyperalgesia (28). Remarkably, these
PGE2- and PGD2-mediated responses form distinct patterns
that can be seen, respectively, during the first phase of LPS
fever, which is mediated by PGE2 (2, 31), and during LPS
hypothermia, which is thought to be mediated by PGD2 (36).
We have called these two patterns the early and the late
sickness syndromes, respectively, and proposed that they rep-
resent two different, sequential stages of the sickness syndrome
(26). As a general rule, the early phase syndrome develops in
a previously healthy organism, at the onset of its response to an
infection. The late phase syndrome occurs when the organism
is already exhausted by the preceding early phase syndrome,
weakened by a preexisting pathology, or exposed to a severe,
damaging homeostatic challenge. The biological significance
of the early phase syndrome is the signaling of the pathogenic
challenge (hyperalgesia), recruiting active defense mechanisms
(fever), and securing the means (wakefulness, hypertension,
generalized motor agitation) for the active search of the opti-
mal environment (conditions for behavioral thermoregulation,
sufficient water supply, protection from predators, etc.) for
fighting the beginning malady. Manifestations of sickness
during the late phase syndrome change drastically. The pain
associated with damage loses its signaling function and starts
to contribute to morbidity; consequently, hyperalgesia changes
to hypoalgesia. Costly energy consumption during the early

phase syndrome, decreased energy supply (e.g., due to the
development of adaptive anorexia), and pathological energy
expenditure (inefficient functioning of damaged tissues) make
the threat of energy deficiency real. Hence, the energy-inten-
sive responses (wakefulness, motor agitation, and arterial hy-
pertension) change into sleep, motor depression, and normo- or
hypotension, respectively. An elevated body temperature re-
mains potentially beneficial, but its benefits could now be
easily offset by the harmfully high energetic cost. Responding
to this delicate balance, threshold dissociation develops, thus
allowing body temperature to be maintained at either an ele-
vated level or, if the cost-benefit ratio is especially unfavorable
(e.g., in a cold environment), at a lowered level. Several
energy-saving symptoms of the late phase syndrome, including
sleep and motor depression, have been either proposed or
directly shown to be beneficial during infection, and the con-
servation of energy is probably the primary role of this syn-
drome (26). Consistent with such a role, Krall et al. (12) report
that the hypothermic effect of PGD2 is enhanced following
food deprivation. This is a new observation, which may be
important for understanding mechanisms of thermoregulatory
and other physiological responses to decreased food supply.
Such mechanisms are currently being studied in several labo-
ratories (9, 35), and the involvement of central PGD2 proposed
by Krall et al. (12) identifies a new lead for this research.

In conclusion, whereas the effects of PGE2 are those occur-
ring when energy is readily available, the highlighted study
from the laboratories of Alex Steiner and Carlos Feleder (12)
shows that PGD2 may mediate responses occurring when

Table 1. Effects of PGD2 on deep body temperature

Species Site of Administration Dose, �g Effect Reference No.

Rat Preoptic area �0.9* 2 36
3rd ventricle �0.02–0.8* 2 36
Lateral ventricle 0.001–10 1 29

0.01–0.03 2 11
0.1 2 12

�1–3* 2 36
1–50 ↔ 3
2 2 6

20 1 6
Cisterna magna 0.05–0.5 1 7
Subarachnoid space 13† 1/2 15
Femoral vein 0.1–10 ↔ 29
Vena cava 16–102 2 Unpublished‡

85 2 Unpublished§
Rabbit Lateral ventricle 0.09–18 ↔ 13

176 1 13
Monkey Lateral ventricle 2–285† ↔ 22

190† 1 22
Cat 3rd ventricle 0.4–64 ↔ 5

Effects on deep body temperature are marked as:2, decrease;1, increase;
↔, no change;1/2, inconsistent. *Dose was recalculated based on the body
mass reported; †total amount administered over a 6-h infusion; ‡A. Garami, E.
Pakai, A. A. Romanovsky, unpublished data, cited from Ref. 30; §A. A.
Steiner, A. S. Dragic, J. Pan, A. A. Romanovsky; unpublished data, cited from
Ref. 30.

Fig. 1. The chemical structures and some physiological, brain-mediated effects
of PGE2 and PGD2. PGE2 causes fever by acting on EP3 receptors in the
median preoptic nucleus (14). PGD2 causes sleep by acting on DP1 receptors
in the leptomeninges of the basal forebrain (17). Both sites are schematically
shown.
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energy resources are threatened or depleted. E is for excess; D
is for depletion. There is also an A in this story: it goes to the
Albany College of Pharmacy for establishing the young, vi-
brant, and highly promising program in the physiology and
pharmacology of systemic inflammation.
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